Ab Initio Structure Search and in Situ 7Li NMR Studies of Discharge Products in the Li–S Battery System
نویسندگان
چکیده
The high theoretical gravimetric capacity of the Li-S battery system makes it an attractive candidate for numerous energy storage applications. In practice, cell performance is plagued by low practical capacity and poor cycling. In an effort to explore the mechanism of the discharge with the goal of better understanding performance, we examine the Li-S phase diagram using computational techniques and complement this with an in situ (7)Li NMR study of the cell during discharge. Both the computational and experimental studies are consistent with the suggestion that the only solid product formed in the cell is Li2S, formed soon after cell discharge is initiated. In situ NMR spectroscopy also allows the direct observation of soluble Li(+)-species during cell discharge; species that are known to be highly detrimental to capacity retention. We suggest that during the first discharge plateau, S is reduced to soluble polysulfide species concurrently with the formation of a solid component (Li2S) which forms near the beginning of the first plateau, in the cell configuration studied here. The NMR data suggest that the second plateau is defined by the reduction of the residual soluble species to solid product (Li2S). A ternary diagram is presented to rationalize the phases observed with NMR during the discharge pathway and provide thermodynamic underpinnings for the shape of the discharge profile as a function of cell composition.
منابع مشابه
Ab Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.
In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...
متن کاملAB Initio Calculations of NMR Spectra for H20114C9N4 As A New Nanosemiconductor Molecule
BCN compounds have been researched theoretically and experimentally widely. In this paper, weintroduce the theoretical prediction of ternary B-C-N compounds. NMR spectroscopy was employedextensively to study these ternary nanostructures. We discuss the utilization of chemical shiftinformation as well as ab initio calculations of nuclear shielding for H20134C9N4 structuredetermination. We calcul...
متن کاملAb Initio Calculation 29Si NMR Chemical Shift Studies on Silicate Species in Aqueous and Gas Phase
Nowadays NMR spectroscopy becomes a powerful tool in chemistry because of the NMR chemical shifts. Hartree–Fock theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts of various silicate species in the silicate solution as initial components for zeolite synthesis both in gas and solution phase. Calculations have been performed at geo...
متن کاملNMR Study of Benzo-15-Crown-5 Complexes with 7Li+ and 133Cs+ Ions in Nonaqueous solvents
Complexes of benzo-15-crown-5 macrocycle with Li+ and Cs+ ions were investigated by 7Li and 133Cs NMr in a number of nonoqueous solutions. The resulting 1:1 complex with Li+ ion was found to be much more stable than that with Cs+ ion. With the exception of pyridine solutions the stabilities of the complexes varied inversely w...
متن کاملAb initio and DFT studies on tautomerism of 5-methyl cytosine in gaseous phase
Ab initio and DFT methods have been used to study the seven tautomeric forms of 5-methylcytosine molecule.The related tautomer in gas phase have been studied at HF/6-31G, HF/6-31G* and B3LYP/6-31G* levels oftheory. The structures,enthalpies,entropies,Gibbs free energies,relative tautomerization energies of tautomersand tautomeric equilibrium constants were compared and analyzed along with full ...
متن کامل